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Basic Concept

• Since real world SLMs can only implement 
non-negative masks, the values of ∅ 𝑚𝑚,𝑛𝑛
must range between 0 and 1

• To  handle the negative values, the mask   
can be expressed in terms of two non-
negative quantities, i.e,. 

∅ 𝑚𝑚,𝑛𝑛 = ∅+ 𝑚𝑚,𝑛𝑛 -∅− 𝑚𝑚, 𝑛𝑛 ,
where

∅+ 𝑚𝑚,𝑛𝑛 = �∅ 𝑚𝑚,𝑛𝑛 𝑖𝑖𝑖𝑖 ∅ 𝑚𝑚,𝑛𝑛 > 0
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜

and

∅− 𝑚𝑚,𝑛𝑛 = � ∅ 𝑚𝑚,𝑛𝑛 𝑖𝑖𝑖𝑖 ∅ 𝑚𝑚, 𝑛𝑛 < 0
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜
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Figure 1: Basic architecture of a single pixel compressive sensor which integrates 
the light from the scene, modulated by codes written on the SLM 

 

What are the optimum masks for tasks specific compressive sensing ?



Linear re-reconstruction model

• Measurement model - 𝒖𝒖 = 𝚽𝚽𝚽𝚽 + 𝒗𝒗
• 𝑹𝑹𝝂𝝂 = 𝐸𝐸 𝒗𝒗𝒗𝒗𝑻𝑻 , 𝑹𝑹𝚽𝚽 = 𝐸𝐸 𝚽𝚽𝚽𝚽𝑻𝑻

• The optimum linear reconstruction operator that minimizes MSE = 
𝐸𝐸 𝚽𝚽 −𝑾𝑾𝒖𝒖 2 is given by  𝑾𝑾 = 𝑹𝑹𝚽𝚽𝚽𝚽T 𝚽𝚽𝑹𝑹𝚽𝚽𝚽𝚽T + 𝑹𝑹𝝂𝝂 −1

• 𝑀𝑀𝑀𝑀𝐸𝐸 = 𝐸𝐸 𝑾𝑾 𝚽𝚽𝚽𝚽 + 𝒗𝒗 − 𝚽𝚽 2 = 𝑜𝑜𝑜𝑜 𝑾𝑾𝚽𝚽𝑹𝑹𝚽𝚽𝚽𝚽T𝑾𝑾𝑇𝑇 + 𝑾𝑾𝑹𝑹𝝂𝝂𝑾𝑾𝑇𝑇 + 𝑹𝑹𝚽𝚽 − 2𝑜𝑜𝑜𝑜 𝚽𝚽𝑹𝑹𝚽𝚽𝑾𝑾

• Optimum 𝑾𝑾 (for any given choice of 𝚽𝚽) is obtained by setting the gradient of MSE to zero 

• What is the optimum choice of 𝚽𝚽 which will yield the minimum value of MSE 
for particular objects of interest?



Single Measurement

• To answer this question, let us consider the special case where only one measurement is 
being made, and Φ is therefore a vector

• 𝑾𝑾 = 𝑹𝑹𝚽𝚽ΦT

𝛼𝛼+𝜎𝜎

• 𝑀𝑀𝑀𝑀𝐸𝐸=𝑜𝑜𝑜𝑜 𝑹𝑹𝚽𝚽 − Φ𝑹𝑹𝚽𝚽𝑹𝑹𝚽𝚽ΦT

Φ𝑹𝑹𝚽𝚽ΦT+𝜎𝜎

• Photon Constraint: 
• A consequence of the conservation of energy is that no column in the sensing matrix 𝚽𝚽 can sum (in absolute 

value) to greater than one

• 𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑜𝑜
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎 Φ 𝑀𝑀𝑀𝑀𝐸𝐸 = 𝑜𝑜𝑜𝑜 𝑹𝑹𝚽𝚽 − Φ𝑹𝑹𝚽𝚽𝚽𝚽ΦT

Φ𝑹𝑹𝚽𝚽ΦT+𝜎𝜎

𝑜𝑜𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑠𝑠𝑜𝑜 𝑜𝑜𝑜𝑜: max
𝑗𝑗

𝛷𝛷𝑗𝑗 = 1

• 𝑚𝑚𝑎𝑎𝑚𝑚𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎 Φ 𝐽𝐽𝜎𝜎,Φ = Φ𝑹𝑹𝚽𝚽𝚽𝚽ΦT

Φ𝑹𝑹𝚽𝚽ΦT+𝜎𝜎
𝑜𝑜𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑠𝑠𝑜𝑜 𝑜𝑜𝑜𝑜: max

𝑗𝑗
𝛷𝛷𝑗𝑗 = 1



Optimum solution for single measurement (cont’d)

• One way to ensure that 𝛷𝛷𝑗𝑗 ≤ 1 is to assume that 𝛷𝛷𝑗𝑗 = 1−𝑒𝑒𝑒𝑒𝑒𝑒 −𝛼𝛼𝑦𝑦𝑗𝑗
1+𝑒𝑒𝑒𝑒𝑒𝑒 −𝛼𝛼𝑦𝑦𝑗𝑗

, where 𝑦𝑦𝑗𝑗 are dummy 
variables free to taken on any real value

• we can maximize the ratio with respect to 𝑦𝑦𝑗𝑗, with the understanding that the mask values are a 
sigmoid function of the optimum values of 𝑦𝑦𝑗𝑗.

• 𝐽𝐽𝜎𝜎 = Φ𝑹𝑹𝚽𝚽𝚽𝚽ΦT

Φ𝑹𝑹𝚽𝚽ΦT+𝜎𝜎
=

∑𝒊𝒊 ∑𝒋𝒋 𝛷𝛷𝑖𝑖𝛷𝛷𝑗𝑗𝑟𝑟𝑖𝑖𝑗𝑗
𝑥𝑥𝑥𝑥

∑𝒊𝒊 ∑𝒋𝒋 𝛷𝛷𝑖𝑖𝛷𝛷𝑗𝑗𝑟𝑟𝑖𝑖𝑗𝑗 +𝜎𝜎

• 𝛁𝛁𝒚𝒚𝒊𝒊𝐽𝐽𝜎𝜎 = −2𝛼𝛼𝑒𝑒𝑒𝑒𝑒𝑒 −𝛼𝛼𝑦𝑦𝑖𝑖
1+𝑒𝑒𝑒𝑒𝑒𝑒 −𝛼𝛼𝑦𝑦𝑖𝑖 2

∑𝒋𝒋 𝛷𝛷𝑗𝑗𝑟𝑟𝑖𝑖𝑗𝑗
𝑥𝑥𝑥𝑥

∑𝒊𝒊 ∑𝒋𝒋 𝛷𝛷𝑖𝑖𝛷𝛷𝑗𝑗𝑟𝑟𝑖𝑖𝑗𝑗 +𝜎𝜎
−

∑𝒊𝒊 ∑𝒋𝒋 𝛷𝛷𝑖𝑖𝛷𝛷𝑗𝑗𝑟𝑟𝑖𝑖𝑗𝑗
𝑥𝑥𝑥𝑥

∑𝒊𝒊 ∑𝒋𝒋 𝛷𝛷𝑖𝑖𝛷𝛷𝑗𝑗𝑟𝑟𝑖𝑖𝑗𝑗 +𝜎𝜎
𝟐𝟐 ∑𝒋𝒋𝛷𝛷𝑗𝑗𝑜𝑜𝑖𝑖𝑗𝑗

• 𝛁𝛁𝒚𝒚𝐽𝐽𝜎𝜎 = 1
Φ𝑹𝑹𝚽𝚽ΦT+𝜎𝜎

� 𝐒𝐒 � 𝑹𝑹𝚽𝚽 𝑹𝑹𝚽𝚽ΦT − 𝐽𝐽𝜎𝜎ΦT

• Where 𝑜𝑜𝑖𝑖𝑖𝑖 = −2𝛼𝛼𝑒𝑒𝑒𝑒𝑒𝑒 −𝛼𝛼𝑦𝑦𝑖𝑖
1+𝑒𝑒𝑒𝑒𝑒𝑒 −𝛼𝛼𝑦𝑦𝑖𝑖 2

𝑦𝑦𝑗𝑗

𝛷𝛷𝑗𝑗



Observations

• This gradient can be zero in one of two ways. 
• (i) 𝑹𝑹𝚽𝚽ΦT − 𝐽𝐽𝜎𝜎ΦT = 𝟎𝟎, which implies that ΦT is a eigen-vector of 𝑹𝑹𝚽𝚽 with eigenvalue 𝐽𝐽𝜎𝜎, 

or 
• (ii) the diagonal elements of S are zero.

• When 𝜎𝜎 is small,  𝐽𝐽𝜎𝜎 depends mostly on Φ. 
• In the limiting case when 𝜎𝜎 = 0, choosing Φ to be the dominant eigen-vector of  𝑹𝑹𝚽𝚽

equates 𝐽𝐽𝜎𝜎 to its largest eigenvalue, and the first condition is satisfied.

• when 𝜎𝜎 becomes larger solution pivots to satisfy condition (ii), 
• −2𝛼𝛼𝑒𝑒𝑒𝑒𝑒𝑒 −𝛼𝛼𝑦𝑦𝑗𝑗

1+𝑒𝑒𝑒𝑒𝑒𝑒 −𝛼𝛼𝑦𝑦𝑗𝑗
2 = 0, which implies that 𝛷𝛷𝑖𝑖 = 1−𝑒𝑒𝑒𝑒𝑒𝑒 −𝛼𝛼𝑦𝑦𝑗𝑗

1+𝑒𝑒𝑒𝑒𝑒𝑒 −𝛼𝛼𝑦𝑦𝑗𝑗
= ±1, 

• we have proof that the optimum values for the element of Φ must be  binary
• In this case, use gradient descent to find the optimum binary values of the mask

𝛁𝛁𝒚𝒚𝐽𝐽𝜎𝜎 =
1

Φ𝑹𝑹𝚽𝚽ΦT + 𝜎𝜎
� 𝐒𝐒 � 𝑹𝑹𝚽𝚽 𝑹𝑹𝚽𝚽ΦT − 𝐽𝐽𝜎𝜎ΦT



Additional Measurements

• To find the next best measurement vector, we “remove” the component of 
the signal that is represented by the first measurement, therefore

• �𝚽𝚽 = 𝚽𝚽 − 𝑹𝑹𝚽𝚽ΦTΦ𝚽𝚽
Φ𝑹𝑹𝚽𝚽ΦT+𝜎𝜎

• The residual correlation matrix is
• 𝑹𝑹�𝚽𝚽 = 𝑹𝑹𝚽𝚽 + 𝑹𝑹𝚽𝚽ΦTΦ𝑹𝑹𝚽𝚽

Φ𝑹𝑹𝚽𝚽ΦT+𝜎𝜎
Φ𝑹𝑹𝚽𝚽ΦT

Φ𝑹𝑹𝚽𝚽ΦT+𝜎𝜎
− 2

• If 𝜎𝜎 is small then Φ𝑹𝑹𝚽𝚽ΦT

Φ𝑹𝑹𝚽𝚽ΦT+𝜎𝜎
≅ 1, then 𝑹𝑹�𝚽𝚽 = 𝑹𝑹𝚽𝚽 − λΦTΦ

• i.e. this reduces to the conventional eigenvector/eigenvalue problem



Simulations

• Infra red target images are show in (I)
• Conventional images of a target at various noise levels are show in (II)

• (a) no noise, (b) SNR=5, (c) SNR=30, and (d) SNR=90.

(I) Typical images used for
estimating target statistics and mask optimization

(a) (b) 

(c) (d) 
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Examples of optimized masks for different Noise Levels

• The masks in the top three rows are optimized for SNR values of 5, 30, and 90 respectively. 
• The PCA masks are shown in the bottom row. 

• Note that the masks appear to be almost binary valued for SNR=5 (high noise) and essentially the same as 
the PCA for  SNR=90 (low noise)

Masks for top 5 optimum measurements

SNR=5

SNR=30

SNR=90

PCA



Reconstruction error – high noise (SNR=5)
(without photon constraints)

• In high noise, the masks optimized for an SNR of 5 yield the smallest MSE. 
• Masks optimized for moderate and high SNR also perform better than the PCA.

0 10 20 30 40 50 60 70 80 90 100
18.8

18.9

19

19.1

19.2

19.3

19.4

19.5

19.6

19.7

Number of Masks

log
 (M

ea
n 

Sq
ua

re
 E

rro
r)

 

 
Normalized PCA
Optimized SNR 5
Optimized SNR 30
Optimized SNR 90

SNR=5
SNR=30

SNR=90
PCA

Re
co

ns
tr

uc
tio

n 
M

SE

Number of Masks 



Reconstruction error – moderate and low noise 
(no photon constraint)

• In moderate noise (a), the mask optimized for SNR=30 yields the best performance as the number of 
features is increased, while the PCA yields highest MSE. 

• For SNR = 90 (b), (i.e. in low noise) the performance of all sets of masks is comparable. 

 

(a) 

 

(b) 
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Normalized PCA
Optimized SNR 5
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Results with Photon Constraints – high noise

• When a photon constraint is imposed by limiting the integration time allocated to each 
mask, the MSE initially decreases but then increases again as more noisy measurements 
are included.  

• In high noise conditions, the best results are obtained using the masks optimized for SNR=5, 
although the mask optimized for low and medium SNR still outperform the PCA

SNR=5

SNR=30
SNR=90

Number of Masks 



Results with Photon Constraints – moderate and Low noise

• Under the photon constraint at an SNR =30, the mask optimized for moderate noise yields the 
best result, compared to the PCA and the masks optimized for other noise levels, as shown in (a). 

• In low noise conditions (SNR=90), there is no appreciable difference between any of the masks, as 
shown in (b).

(a) (b) 
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Signal Dependent Noise

• The masks designed to minimize MSE in signal independent noise continue to 
perform better than the normalized PCA, even when signal dependent noise is 
present.

Number of Masks 

SNR=5

SNR=30

SNR=90PCA



Examples of Reconstruction at different SNRs

• The results of reconstructing the ideal image 
using  noisy feature specific measurements 
are shown

• Compared to PCA and conventional noisy image

• The optimized masks always outperform the 
PCA by yielding a smaller MSE at the same 
compression ratio. 

• The results are also better than the 
conventional image in high noise,

• Visually comparable to the conventional image in 
moderate and low noise conditions. 

• Reconstruction based on Feature Specific Imaging 
exhibit a residual MSE due to the compressive 
nature of the measurements.
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Summary
• In EO/IR Compressive Sensing comparatively little attention has been given to the issues that arise 

when compressive measurements are made in hardware. 
• compressive measurements are corrupted by detector noise. 
• the number of photons available is the same whether a conventional image is sensed, or multiple coded measurements are made 

in the same interval of time. 
• Thus it is essential that the effects of noise and the constraint on the number photons must be taken into account in the analysis, 

design and implementation of a compressive imager. 

• Feature specific imaging (FSI) is a form of compressive sensing where the measurement kernels are not 
random, but are based on prior knowledge of the information we are interested in sensing. 

• We have developed a methodology for designing a set of masks  that satisfy the photon constraint and are optimum for making 
measurements that minimize the reconstruction MSE in the presence of noise. 

• To simplify the optimization process, we employed an analytical mapping that ensures the masks can take on any value between 
± 1 and formulated a quadratic objective function that can be minimized using gradient descent. 

• The process then finds the mask one at a time, by determining the vector which yields the best possible measurement for 
reducing the MSE. 

• The sub-space represented by the optimized mask is removed from the signal space, and the process is repeated to find the next 
best measurement.

• We demonstrated that the photon constraint limits the number of masks that can be used at a 
particular SNR to reduce the reconstruction MSE. 

• In noisy conditions, MSE initially decreases as the number of measurements is increased, but then increases when  
measurements that  contain more noise than signal information are included. 

• we found that the optimized masks perform better than the normalized PCA, even in signal dependent noise.
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